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Abstract. An exact entropy functional is derived for an king model on a 2 x N lattice with 
arbitrary vertical bonds and arbitrary external fields. Explicit results for special cases are 
discussed. 

1. Introduction 

Increasing attention has been paid to the study of inhomogeneous models, ranging 
from ID classical Ising models [1-4] and continuous hard rod fluids [5], to special 2D 
vertex models [6] and interface models [7,8]. More encouraging results were obtained in 
the so-called inverse problem initiated by Percus [l] and generalised to inhomogeneous 
couplings by Tejero [9]. It consists in finding the external fields needed to produce 
a given magnetisation profile (i.e. the inverse profile). It has been further extended 
to the Bethe lattice [lo] and lattices with articulation points [ l l]  by Samaj. Despite 
many successes, the inverse technique has long been restricted to special topologies 
which do not have feedback loops, since only in this case are the inverse solutions 
local, Otherwise, there exist collective modes [12]. Recently, Percus and Zhang 
solved the inhomogeneous Ising model on a ring [13] and then on a multi-connected 
network [14] by enlarging the phase space to include collective mode variables. Because 
this approach gets increasingly involved as more and more loops are introduced, it 
cannot be used in higher dimensions. Even the problems of inhomogeneous Ising 
model with next-nearest-neighbour interaction or with higher spins on a ring are still 
open (although some partial results for next-nearest-neighbour hard core exclusion 
have been obtained [15]). The purpose of the current investigation is to demonstrate 
the possibility of generalising 1D density functional to higher dimensions. This will be 
done by presenting exactly solvable 2D examples where one can analyse deeper aspects 
of the inverse problem of statistical mechanics, which reads in its most general form: 
find coupling constants from correlation functions. 

In this paper, we study an inhomogeneous Ising model on a 2 x N lattice with 
arbitrary vertical couplings and external fields by applying the idea of the entropy 
functional [16,17], which was introduced originally for a continuous system. It can be 
regarded as a generalisation of the original inverse method to the problem of deter- 
mining both internal and external interactions needed to evoke given magnetisations 
and nearest-neighbour pair correlation functions. In section 2, we shall set up the 
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model and introduce the concept of the entropy functional. In section 3, we review 
the basic formulation but in a general context for the class of models of this type. In 
section 4, we apply the general formulation to our problem, and derive the equations 
which govern the inverse profile. In the last section, we study the properties of the 
solutions and discuss some special cases (explicit solutions on some hypersurfaces). 
The major property which is common to all cases, and which distinguishes the entropy 
formulation of this system, is that the locality of the interaction is mirrored by locality 
of magnetisation profile and thermodynamic potentials. 

2. Model set-up and entropy functional 

Consider the Ising model with spin variables (one may describe the system as a lattice 
gas by the standard transformation r~ + 2v  - 1) oX,5, = k1 defined on a 2 x N lattice 
as shown in figure 1. 

i J 1  J l  

Figure 1. The two-row Ising lattice. 

Since we are not concerned with boundary effects here, we may take N to be very 
large. The partition function is the standard one 

with h,, h, being the external fields and K , ( J )  the vertical (horizontal) couplings, 
and we have set /3 = 1. Here hx ,hx  and K ,  are treated as arbitrary variables. The 
free energy F [ h , i , K ]  = - I n 2  is the generating functional of the magnetisations 
m, = (r~,),fi, = (5,) and the vertical pair correlations c, = (axax) 

The Legendre transform of F 

-s [m, f%c]  = F +~(h ,m ,+h , f i ,+K,c , )  (3) 
is the so-called entropy functional [16] (up to a constant - 2 N J ) .  Regarding S as a 
functional of the densities shown in its arguments, we then find from (2) and (3) the 
associated conjugate relations 

The task is to construct S (a generalised inverse problem), Equations (4) constitute 
a complete solution in inverse form of the profile problem at the one- and (nearest- 
neighbour) two-body levels, which contains the full thermodynamics. 
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3. General formulation 

The method of constructing S and the inverse profile equation is a discrete analogy 
of [16], which is just a straightforward generalisation of [2] to higher dimensions. Let 
Tx(vx ,  v i ) ,  the transfer matrix with I’, the microscopic configuration in the hyperplane 
orthogonal to the x direction, have the following form 

with a matrix e(v, v’) describing some interaction. We define two vectors as 

where (LI and IR) are the left and right boundary state vectors, respectively. Then we 
have the following pair of recurrence relations 

By definition, the probability for the configuration v ,  = v is given by 

By eliminating W in (6 )  and (7), one arrives a pair of nonlinear equations for the ratios 
of 2: ( v ) / z ;  ( V I )  

where eT is the transpose of e. The above expressions uniquely determine the ratios, 
provided the obvious normalisation 

1 

is added. Once the ratios are obtained, the solution for the inverse profile is then given, 
following (7), by 

From the general formulation above, we learn that, with a suitable enlargement of 
the density space (including as well the appropriate correlation functions), it is also 
possible to extend the techniques of inverse solutions of I D  inhomogeneous systems to 
higher dimensions. 



2176 M Q Zhang 

4. Explicit equations 

The general formulation, applied to the current situation, amounts to making the 
following identities : 

v, = {ax,ox) 

W x ( v x )  = exp(h,o, + h,i?, + K,a,ox) 

e(v, v’) = exp(Jaa’ + J & ) .  

Then, the m,,t?i,,c, and n,(v) are related by 

or equivalently we may express ni ,  i = 1,. . . ,4( defined below ) in terms of m, m and c 
as 

n l  = n,(++) = :(I + c, + m, +fix) 

n, = n,(+-) = a ( l  - c ,  +m, -mx) 

n3 3 n,(-+) = :(I - c, - m, + m,) 
n4 = n,(---) = + c, - m, - m,) 

1 

(hereafter, for convenience, we number the four possible states at each site in a natural 
way as shown above; this should not be confused with the value of x which we shall 
suppress whenever possible). 

Since our matrix e is symmetric, we can rewrite (8) in its generic form 

where we have combined the diagonal sum with the right hand side. Yi can be regarded 
as either of Z,(i)* and it is understood that b should correspondingly be thought of as 
b’. With e given by (e  = exp(2J)) 
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the explicit forms of b$ are 

nlE2 - n3 - n2 + n 4 ~ - 2  
( E  - €-1)2  

n2c2 - n4 - n ,  + n3E-2 
( E  - €-1 )2  

n3e2 - n4 - n,  + n 2 ~ - 2  
( E  - € - I ) *  

n4c2 - n3 - n2 + rile-' 
( E  - € - I ) *  

b* = n* - 
1 1  

bT - ,* 
2 -  2 -  

b' - ,* - 
3 -  3 

b' - nk - 
4 -  4 

where n: = n,+l(i). It is obvious, from (9) that xi bi = 0. 

follows : 
It turns out to be more convenient to define variables pi and functions Of(p) as 

and the expressions in (14) become 

where the a are given by 

bf - bf + bf - b$ = sinh 25 - m, cosh 25 a+ = 
2 -  4(E - € C l )  2 

+ - b$ - bf + bf - b$ m,+, sinh 25 - m, cosh 25 
2 

- - a3 = 
4(e - 4) 

+ - (bf + b$)(e - E - ' )  + (bf - b$)(e + E - ' )  
a- = 

4(E - € - I )  

c,+~ sinh 25 + (m,,, + @I,+,) cosh 25 
2 

m, +fix + c, 
2 cosh2 2 5 .  sinh 25 - - - 

(20b) 

Equations (17)-(19) are the basic equations for our system. Given the magnetisa- 
tions and vertical correlations {mxrmx ,cx} ,  the pi are determined by (13) and (16) and 
the a by (20b). Thus (17)-(19) can be solved for O f ,  after which the inverse profile is 
found from (lo), by 

0 2  - 0 3  - 0 4  

4 

4 
0 4  - 0 2  - 0, 

4 

h, = 

h, = 

K ,  = 

- 0 3 - 0 2 - 0 4  
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where Oi 0; + e;, and the entropy functional is given by [15] 
1 

- S [m, rii, c] = S o  [m, c] + Ac, 1 dA K , ( m ” ,  riii, c’.) 
Y 0 

where So is the entropy of some uniform reference system, Af, 
cfo is the corresponding uniform value). 

f, -fa, fi f, + j.Af, 

5. Solution of the inverse profile equations 

The outstanding property of (22)-(23), that is somewhat concealed by the formalism, is 
that they are local: the profile { h x , h x , k x }  at x depends only upon mx,mx~l,mx,mx~l,cx, 
cXklr and one can define an entropy at x in terms of these quantities alone. However, 
(17)-(19) are strongly coupled algebraic equations of the sinh(Bi). After elimination, 
one would end up with an irreducible nonlinear equation of high degree which cannot 
be solved explicitly in closed form, although it can be solved to any required degree of 
accuracy by methods of successive approximation. For the purpose of illustration, we 
shall solve the equations in some special cases. The general properties of the equations 
are : 

(i) if all the magnetisations change their signs, so do the external fields; 
(ii) if all m,  ti^, c are small, so are h, h, K ; 
(iii) equations are invariant under the exchange: index 2 CI 3 and h, m CI h, m (the 

( hx ) can be 
symmetry of interchanging rows). 
Due to this last property, we only have to solve for e$, e$ (i.e. h,, K,), 
obtained by this interchange of the variables. 

5.1. Low densities 

From property (ii) mentioned above, we know that this corresponds to small fields 
(external h , h  and internal K ) ,  and therefore to the small 8 (see (22)). To lowest order, 
we can linearise (17)-( 19), and immediately obtain 

sinh2 ~Jc,,, - (1 + cosh’ 2J)c, 
2 cosh 25 

= sinh 2Jm,+, - - cosh 2Jmx + 
(a’ + p2p3 - Plp4)(p4 - p1) + cosh 2J(a# - af)P1 e; 2- 

2cosh2Jp,P4(p2 +p3) 
= sinh 25(fi,+, + mXkl)  - cosh 2J(m,  + fix) - 

hence the fields are 

h, 1: cosh 2Jm, - sinh 25 mx+l + mx-l 

h,  1: cosh 2Jri1, - sinh 25 mx+l 

K ,  E 

2 
- +fix-, 

2 
cosh 25 + (cosh 25)-1 

2 
sinh’ 25 

‘X - 4cosh2J(CXf1 f c X - l )  
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We see that for low densities, the ‘conjugate’ quantities are proportional to one another 
with the nearest-neighbour corrections. The entropy functional S ,  from (3), is just 

(cosh 23 + (cosh 2J)-’  sinh’ 25 
- S  = - S o + c A c ,  X 2 ‘X - 4 cosh 2 J + cX- l ) )  

X 

+ Am, (cosh 2Jm, - sinh 25 mx+l + mx-l 2 

X 

+ 1 Am, (cosh 2Jm, - sinh 2 3  + 

2 

As in any (Gaussian) linear equation of motion approximation, the ‘energy’ S is 
quadratic in densities. 

5.2. The case when 0: = 0; + 0f 

First, we suppose this to hold only at x. According to (22), this is the case when 
K ,  = 0. To find h,, we have to solve (17) and (18) for e t .  This can be easily done and 
is given by 

U f  0’ - 
3 -  

P1 P3 + P2P4 

from which 

m, cosh 2J - m,+, sinh 25 
= A [sinh-I ( 

+sinh-’ ( 
2 DX 

DX 
m, cosh 25 - mx-l sinh 25 

where 

D, = { [(l + m,)’ - (c, + mx)2]1/2 + [(l - - (c, - mx)2]1/2} , (26)  
It is very instructive to compare this result with previous ones [14]. When K ,  = 0, there 
is a collective mode K ‘running’ through 0, which is the same as E ,  the ‘conjugate’ 
collective mode through ax(see [14] for details) and h, is related to K by 

- 2 4  + ( ( 2 4 ) ’  - m; + 1 - 4K)’l2 
2a; + ( ( 2 ~ 1 7 ) ~  - m: + 1 - 4K)I/2 

Comparing with (25) ,  with the help of (20) and (26) ,  we see that the collective mode K 
is given by 

4K = -“x  - 4(P1P3 + P2P4l2 
= 1 - m  - ~ 2 = 1 - f i  - D  - 2  

= 1 - f i x  - 4 ( ~ 1 ~ 2  + ~ 3 ~ 4 ) ~  

x x  x x  

= - {1+c , -mX-mx 1 2 2 - 2  
2 
- [(U + f ix) ’  - (c, + mX)’)((1 -fix)’ - (c, - m,) 2 )I 1/2 1 .  
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This can be viewed as the hypersurface (equivalent to (19)) on which K ,  = 0 is realised. 
It has a rather clear physical meaning: this is the surface on which the ‘conjugate’ 
collective modes at x are equal! 

If K ,  = 0 for all x, then we know K = K = 0. The hypersurface equation (28) 
becomes local in magnetisation 

Intuitively, this must of course be true, because the whole system ‘denatures’, separating 
into two ‘strands’. Statistical independence means n,(a , ,8 , )  = f ( 1  + a,m,)(l + S,rii,); 
(29) can therefore be verified directly (it is interesting to verify the same through (19)). 

5.3. The case when 62 = 0 for all x 

This last case is the one with a hypersurface defined by h, = h, for all x. There are 
two possibilities. 

If n ,  # n4, then h, # 0. We find, from (17) and (18), that 

1 Plar  + Psaf 
P2(P: - P i )  

6; = sinh- 

- sinh-l ( (mX+, sinh 25 - m, cosh 25)( 1 + c, + m, + mJ1” 

(m,,, sinh 25 - m, cosh 25)(1 + c, - m, - mX)’I2 
(m, + fix)( 1 - c, + m, - mx)1/2 

- 
(m, + fi,)(l - c, + m, - ~ , ) 1 / 2  

+ 
Of course, the fields are given by (22) and the hypersurface of the solution is given by 
(19). 

If n,  = n4, then h, = h, = 0 or 6; = O f .  We find, from (19), that 

- sinh-l c,+~ sinh’ 25 - c,(cosh2 25 + 1)  
2 cosh 25(1 - c;)’/~ 2 -  

The inhomogeneous internal (vertical) coupling field is then given, according to (22), 
by 

( 1  + cosh2 25) - c,+, sinh2 25 
2 cosh 25( 1 - c$)’/’ 

c,(l + cosh’ 25) - c,-~ sinh’ 25 + sinh-I 
2 cosh 25( 1 - c$),/* 

Interestingly enough, in the uniform system, it reduces to 

C K = sinh-’ 
~ 0 ~ h 2 5 ( 1  - ~ 2 ) 1 / 2  

which translates into the well known result 

sinh2K cosh2 25 
1 + sinh’ K cosh2 25 ’ 

c =  
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For the inhomogeneous system with zero external fields, the entropy functional has 
only the internal energy part (since So[c = 01 = 0 and we have dropped the trivial 
horizontal part - 2NJ)  : 

1 

S[C] = C, 1 { kx( 1 + cosh’ 25) - AC,+~ sinh’ 25 
x o  

+[(k,(l  +cosh2 25) - ic,+] sinh’ 25)’ + 4(1 - A’c;) cosh’ 25]1/2} 

{ j.c,-, sinh2 25 - k , ( l  + cosh’ 25) 

+ [ ( i c x ( l  +cosh2 25) - j.c,-I sinh’ 25)’ +4(1 - A’ci) cosh2 2J] ’12} - I  

where 

c,(l + cosh2 25) - c,+~ sinh’ 25 
2 cosh 25 

c,(l + cosh2 25) - c,-] sinh’ 25 
2 cosh 25 

a, 5 

P x  = 
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